187 research outputs found

    Spin-Wave Theory of the Multiple-Spin Exchange Model on a Triangular Lattice in a Magnetic Field : 3-Sublattice Structures

    Full text link
    We study the spin wave in the S=1/2 multiple-spin exchange model on a triangular lattice in a magnetic field within the linear spin-wave theory. We take only two-, three- and four-spin exchange interactions into account and restrict ourselves to the region where a coplanar three-sublattice state is the mean-field ground state. We found that the Y-shape ground state survives quantum fluctuations and the phase transition to a phase with a 6-sublattice structure occurs with softening of the spin wave. We estimated the quantum corrections to the ground state sublattice magnetizations due to zero-point spin-wave fluctuations.Comment: 8 pages, 20 figure

    Noble internal transport barriers and radial subdiffusion of toroidal magnetic lines

    Full text link
    Single trajectories of magnetic line motion indicate the persistence of a central protected plasma core, surrounded by a chaotic shell enclosed in a double-sided transport barrier : the latter is identified as being composed of two Cantori located on two successive "most-noble" numbers values of the perturbed safety factor, and forming an internal transport barrier (ITB). Magnetic lines which succeed to escape across this barrier begin to wander in a wide chaotic sea extending up to a very robust barrier (as long as L<1) which is identified mathematically as a robust KAM surface at the plasma edge. In this case the motion is shown to be intermittent, with long stages of pseudo-trapping in the chaotic shell, or of sticking around island remnants, as expected for a continuous time random walk.Comment: TEX file, 84 pages including 32 color figures. Higher quality figures can be seen on the PDF file at http://membres.lycos.fr/fusionbfr/JHM/Tokamap/JSP.pd

    Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3

    Full text link
    We study low temperature properties of an atomic spinless interacting Fermi gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer. The system is described by a quantum spin 1/2 model on the triangular lattice with couplings depending on bonds directions. Using exact diagonalizations we show that the system exhibits non-standard properties of a {\it quantum spin-liquid crystal}, combining a planar antiferromagnetic order with an exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.

    Doping quantum dimer models on the square lattice

    Full text link
    A family of models is proposed to describe the motion of holes in a fluctuating quantum dimer background on the square lattice. Following Castelnovo et al. [Ann. Phys. (NY) 318, 316 (2005)], a generalized Rokhsar-Kivelson Hamiltonian at **finite doping** which can be mapped on a **doped** interacting classical dimer model is constructed. A simple physical extension of this model is also considered. Using numerical computations and simple considerations based on the above exact mapping, we determine the phase diagram of the model showing a number of quantum phases typical of a doped Mott insulator. The two-hole correlation function generically exhibits short-range or long-range algebraic correlations in the solid (columnar) and liquid (critical) phases of the model, respectively. Evidence for an extended region of a doped VBS phase exhibiting holon pairing but **no** phase separation is given. In contrast, we show that hole deconfinement occurs in the staggered dimer phase.Comment: 5 page

    A Generalized Quantum Dimer Model Applied to the Frustrated Heisenberg Model on the Square Lattice: Emergence of a Mixed Columnar-Plaquette Phase

    Full text link
    Aiming to describe frustrated quantum magnets with non-magnetic singlet ground states, we have extended the Rokhsar-Kivelson (RK) loop-expansion to derive a generalized Quantum Dimer Model containing only connected terms up to arbitrary order. For the square lattice frustrated Heisenberg antiferromagnet (J1-J2-J3 model), an expansion up to 8th order shows that the leading correction to the original RK model comes from dimer moves on length-6 loops. This model free of the original sign problem is treated by advanced numerical techniques. The results suggest that a rotationally anisotropic plaquette phase is the ground state of the Heisenberg model in the parameter region of maximum frustration.Comment: 9 pages, 8 figure

    Soliton binding and low-lying singlets in frustrated odd-legged S=1/2 spin tubes

    Full text link
    Motivated by the intriguing properties of the vanadium spin tube Na2V3O7, we show that an effective spin-chirality model similar to that of standard Heisenberg odd-legged S=1/2 spin tubes can be derived for frustrated inter-ring couplings, but with a spin-chirality coupling constant alpha that can be arbitrarily small. Using density matrix renormalization group and analytical arguments, we show that, while spontaneous dimerization is always present, solitons become bound into low-lying singlets as alpha is reduced. Experimental implications for strongly frustrated tubes are discussed.Comment: 4 pages, 4 figure

    Emergent Ising degrees of freedom in frustrated two-leg ladder and bilayer s=1/2s=1/2 Heisenberg antiferromagnets

    Full text link
    Based on exact diagonalization data for finite quantum Heisenberg antiferromagnets on two frustrated lattices (two-leg ladder and bilayer) and analytical arguments we map low-energy degrees of freedom of the spin models in a magnetic field on classical lattice-gas models. Further we use transfer-matrix calculations and classical Monte Carlo simulations to give a quantitative description of low-temperature thermodynamics of the quantum spin models. The classical lattice-gas model yields an excellent description of the quantum spin models up to quite large temperatures. The main peculiarity of the considered frustrated bilayer is a phase transition which occurs at low temperatures for a wide range of magnetic fields below the saturation magnetic field and belongs to the two-dimensional Ising model universality class.Comment: 17 pages, 8 figure

    Ground-state phase diagram and magnetic properties of a tetramerized spin-1/2 J_1-J_2 model: BEC of bound magnons and absence of the transverse magnetization

    Full text link
    We study the ground state and the magnetization process of a spin-1/2 J1J_1-J2J_2 model with a plaquette structure by using various methods. For small inter-plaquette interaction, this model is expected to have a spin-gap and we computed the first- and the second excitation energies. If the gap of the lowest excitation closes, the corresponding particle condenses to form magnetic orders. By analyzing the quintet gap and magnetic interactions among the quintet excitations, we find a spin-nematic phase around J1/J2∌−2J_1/J_2\sim -2 due to the strong frustration and the quantum effect. When high magnetic moment is applied, not the spin-1 excitations but the spin-2 ones soften and dictate the magnetization process. We apply a mean-field approximation to the effective Hamiltonian to find three different types of phases (a conventional BEC phase, ``striped'' supersolid phases and a 1/2-plateau). Unlike the BEC in spin-dimer systems, this BEC phase is not accompanied by transverse magnetization. Possible connection to the recently discovered spin-gap compound (CuCl)LaNb2O7 is discussed.Comment: 18pages, 17figures; title changed, typos correcte
    • 

    corecore